Simultaneous feature selection and clustering using mixture models
نویسندگان
چکیده
منابع مشابه
Simultaneous feature selection and ant colony clustering
Clustering is a widely studied problem in data mining. Ai techniques, evolutionary techniques and optimization techniques are applied to this field. In this study, a novel hybrid modeling approach proposed for clustering and feature selection. Ant colony clustering technique is used to segment breast cancer data set. To remove irrelevant or redundant features from data set for clustering Sequen...
متن کاملFeature Selection in Mixture-Based Clustering
There exist many approaches to clustering, but the important issue of feature selection, i.e., selecting the data attributes that are relevant for clustering, is rarely addressed. Feature selection for clustering is difficult due to the absence of class labels. We propose two approaches to feature selection in the context of Gaussian mixture-based clustering. In the first one, instead of making...
متن کاملA finite mixture model for simultaneous high-dimensional clustering, localized feature selection and outlier rejection
Model-based approaches and in particular finite mixture models are widely used for data clustering which is a crucial step in several applications of practical importance. Indeed, many pattern recognition, computer vision and image processing applications can be approached as feature space clustering problems. For complex high-dimensional data, however, the use of these approaches presents seve...
متن کاملModel Selection for Mixture Models Using Perfect Sample
We have considered a perfect sample method for model selection of finite mixture models with either known (fixed) or unknown number of components which can be applied in the most general setting with assumptions on the relation between the rival models and the true distribution. It is, both, one or neither to be well-specified or mis-specified, they may be nested or non-nested. We consider mixt...
متن کاملAn Overview of the New Feature Selection Methods in Finite Mixture of Regression Models
Variable (feature) selection has attracted much attention in contemporary statistical learning and recent scientific research. This is mainly due to the rapid advancement in modern technology that allows scientists to collect data of unprecedented size and complexity. One type of statistical problem in such applications is concerned with modeling an output variable as a function of a sma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Pattern Analysis and Machine Intelligence
سال: 2004
ISSN: 0162-8828
DOI: 10.1109/tpami.2004.71